

C++ Null Pointers

A pointer that is assigned NULL is called a null pointer.

The NULL pointer is a constant with a value of zero defined in several standard libraries, including

iostream. Consider the following program −

Live Demo

#include <iostream>

using namespace std;

int main () {

 int *ptr = NULL;

 cout << "The value of ptr is " << ptr ;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

The value of ptr is 0

On most of the operating systems, programs are not permitted to access memory at address 0

because that memory is reserved by the operating system. However, the memory address 0 has

special significance; it signals that the pointer is not intended to point to an accessible memory

location. But by convention, if a pointer contains the null (zero) value, it is assumed to point to

nothing.

To check for a null pointer you can use an if statement as follows −

if(ptr) // succeeds if p is not null

if(!ptr) // succeeds if p is null

C++ Pointers

C++ pointers are easy and fun to learn. Some C++ tasks are performed more easily with pointers,

and other C++ tasks, such as dynamic memory allocation, cannot be performed without them.

http://tpcg.io/0sA3lU

As you know every variable is a memory location and every memory location has its address

defined which can be accessed using ampersand (&) operator which denotes an address in memory.

Consider the following which will print the address of the variables defined −

Live Demo

#include <iostream>

using namespace std;

int main () {

 int var1;

 char var2[10];

 cout << "Address of var1 variable: ";

 cout << &var1 << endl;

 cout << "Address of var2 variable: ";

 cout << &var2 << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var1 variable: 0xbfebd5c0

Address of var2 variable: 0xbfebd5b6

What are Pointers?

A pointer is a variable whose value is the address of another variable. Like any variable or

constant, you must declare a pointer before you can work with it. The general form of a pointer

variable declaration is −

type *var-name;

Here, type is the pointer's base type; it must be a valid C++ type and var-name is the name of the

pointer variable. The asterisk you used to declare a pointer is the same asterisk that you use for

multiplication. However, in this statement the asterisk is being used to designate a variable as a

pointer. Following are the valid pointer declaration −

int *ip; // pointer to an integer

double *dp; // pointer to a double

float *fp; // pointer to a float

char *ch // pointer to character

http://tpcg.io/fQ1InE

The actual data type of the value of all pointers, whether integer, float, character, or otherwise, is

the same, a long hexadecimal number that represents a memory address. The only difference

between pointers of different data types is the data type of the variable or constant that the pointer

points to.

Using Pointers in C++

There are few important operations, which we will do with the pointers very frequently. (a) We

define a pointer variable. (b) Assign the address of a variable to a pointer. (c) Finally access the

value at the address available in the pointer variable. This is done by using unary operator * that

returns the value of the variable located at the address specified by its operand. Following example

makes use of these operations −

Live Demo

#include <iostream>

using namespace std;

int main () {

 int var = 20; // actual variable declaration.

 int *ip; // pointer variable

 ip = &var; // store address of var in pointer variable

 cout << "Value of var variable: ";

 cout << var << endl;

 // print the address stored in ip pointer variable

 cout << "Address stored in ip variable: ";

 cout << ip << endl;

 // access the value at the address available in pointer

 cout << "Value of *ip variable: ";

 cout << *ip << endl;

 return 0;

}

When the above code is compiled and executed, it produces result something as follows −

Value of var variable: 20

Address stored in ip variable: 0xbfc601ac

Value of *ip variable: 20

http://tpcg.io/gTdFv7

Pointers in C++

Pointers have many but easy concepts and they are very important to C++ programming. There are

following few important pointer concepts which should be clear to a C++ programmer −

Sr.No Concept & Description

1

Null Pointers

C++ supports null pointer, which is a constant with a value of zero defined in several

standard libraries.

2
Pointer Arithmetic

There are four arithmetic operators that can be used on pointers: ++, --, +, -

3
Pointers vs Arrays

There is a close relationship between pointers and arrays.

4
Array of Pointers

You can define arrays to hold a number of pointers.

5
Pointer to Pointer

C++ allows you to have pointer on a pointer and so on.

6

Passing Pointers to Functions

Passing an argument by reference or by address both enable the passed argument to be

changed in the calling function by the called function.

7
Return Pointer from Functions

C++ allows a function to return a pointer to local variable, static variable and

dynamically allocated memory as well.

C++ References

A reference variable is an alias, that is, another name for an already existing variable. Once a

reference is initialized with a variable, either the variable name or the reference name may be used

to refer to the variable.

References vs Pointers

References are often confused with pointers but three major differences between references and

pointers are −

https://www.tutorialspoint.com/cplusplus/cpp_null_pointers.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_arithmatic.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointers_vs_arrays.htm
https://www.tutorialspoint.com/cplusplus/cpp_array_of_pointers.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_to_pointer.htm
https://www.tutorialspoint.com/cplusplus/cpp_passing_pointers_to_functions.htm
https://www.tutorialspoint.com/cplusplus/cpp_return_pointer_from_functions.htm

 You cannot have NULL references. You must always be able to assume that a reference is

connected to a legitimate piece of storage.

 Once a reference is initialized to an object, it cannot be changed to refer to another object.

Pointers can be pointed to another object at any time.

 A reference must be initialized when it is created. Pointers can be initialized at any time.

Creating References in C++

Think of a variable name as a label attached to the variable's location in memory. You can then

think of a reference as a second label attached to that memory location. Therefore, you can access

the contents of the variable through either the original variable name or the reference. For example,

suppose we have the following example −

int i = 17;

We can declare reference variables for i as follows.

int& r = i;

Read the & in these declarations as reference. Thus, read the first declaration as "r is an integer

reference initialized to i" and read the second declaration as "s is a double reference initialized to

d.". Following example makes use of references on int and double −

Live Demo

#include <iostream>

using namespace std;

int main () {

 // declare simple variables

 int i;

 double d;

 // declare reference variables

 int& r = i;

 double& s = d;

 i = 5;

 cout << "Value of i : " << i << endl;

 cout << "Value of i reference : " << r << endl;

 d = 11.7;

 cout << "Value of d : " << d << endl;

 cout << "Value of d reference : " << s << endl;

 return 0;

}

http://tpcg.io/SS8zU0

When the above code is compiled together and executed, it produces the following result −

Value of i : 5

Value of i reference : 5

Value of d : 11.7

Value of d reference : 11.7

References are usually used for function argument lists and function return values. So following are

two important subjects related to C++ references which should be clear to a C++ programmer −

Sr.No Concept & Description

1
References as Parameters

C++ supports passing references as function parameter more safely than parameters.

2
Reference as Return Value

You can return reference from a C++ function like any other data type.

https://www.tutorialspoint.com/cplusplus/passing_parameters_by_references.htm
https://www.tutorialspoint.com/cplusplus/returning_values_by_reference.htm

	C++ Null Pointers
	C++ Pointers
	What are Pointers?
	Using Pointers in C++
	Pointers in C++

	C++ References
	References vs Pointers
	Creating References in C++

